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1. INTRODUCTION

The small mass dependence (or "strong quantumness") of physical quantum
systems has been investigated in recent years from different points of view.
The suppression of the long-range order by strong quantum fluctuations in
such systems was experimentally observed (see, e.g., Tibballs et al.(1)) and
discussed long ago from the physical point of view (see, e.g., Schneider et
al.(2), or the book (ref. 3, Chapter 2.5.4.3)). A rigorous treatment of this
phenomenon was given by Verbeure and Zagrebnov.(4) The suppression
not only of the long-range order but also of any critical anomalies was
proved by Albeverio, Kondratiev, and Kozitsky.(5)

This paper is related to a previous article by Minlos, Verbeure, and
Zagrebnov(6) in which the properties of limit Gibbs states for an infinite
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We construct the distribution of the infinite-dimensional Markov process
associated with a finite-temperature Gibbs state for a quantum mechanical
anharmonic crystal. The corresponding state is constructed via a cluster expan-
sion technique for an arbitrary fixed temperature and, correspondingly, small
enough masses of particles.
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system of interacting anharmonic oscillators on a v-dimensional lattice Zv

were studied in the limit of small masses of the particles.
We study the finite temperature state of quantum anharmonic crystals.

As usual, the construction of such a state by a Feynman-Kac formula
technique reduces to the construction of some measure m( •) on the space
of periodic trajectories (see refs. 7 and 8 for details) Q = { w j ( T ) , jeZv,
re[0, B], w j ( 0 ) = w j ( B ) } , where B-1 is the temperature of the crystal
system. This measure is the distribution of some Markovian process with
values in (R)z v (see ref. 6).

We construct this measure with the help of some variant of the clus-
ter expansion technique which goes back to the works of Brydges and
Federbush(9,10) and was developed for the system under consideration by
Kondratiev and Rebenko.(11) As we mentioned above, the present work is close
to the results of the paper,(6) in which finite-temperature and ground states
were constructed (also with the assumption of small mass) with the help of
another cluster expansion which required a partition of every trajectory
into proper pieces. A control of the convergence for the cluster expansion
in ref. 6 is based on a delicate combination of combinatorial and
probabilistic estimations with an additional use of WBK asymptotics for
one-particle Hamiltonians. In contrast to the quite complicated technique
of ref. 6, our cluster expansion estimates reduce to the estimation of the
moments of trajectories (w j k(t1) • • • w j k ( r m ) ) at the same sites and conse-
quently, by Gaussian upper-bound inequalities, to detailed estimations of
two-point moments (w j k (T 1 ) w J k ( r 2 ) ) . The latter have an explicit dependence
on the mass parameter which creates the desired quantum effect. We con-
sider this method of estimation as a new input in the study of this type of
models; its implementation constitutes the main technical achievement in
this paper.

In the present paper we consider the Brydges-Federbush type expan-
sion. In ref. 6 all necessary constructions, allowing to construct quantum
states on the quasilocal algebra of states were made using a cluster expan-
sion for the measure m( •), we mention here only the most important details.

The brief contents of this paper is the following. In Section 1 we define
our system and formulate the main result. In Section 2 we construct the
cluster expansion and give a brief proof of the main theorem, and in
Section 3 we provide all necessary estimates.

2. DESCRIPTION OF THE SYSTEM AND MAIN RESULT

We consider a one-component continuous spin system on a v-dimen-
sional cubic lattice Zv. With each site jeZv a one-particle physical Hilbert
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space L 2 ( R 1 , d q ) is associated, where dq is the Lebesgue measure on R1.
Then

is the Hilbert space related to some given bounded set A <=. Zv, \A\ < oo.
For every finite set A c Zv we consider the Hamiltonian (h = 1) in KA:

where m is the mass of the particles, the sum being extended over all pairs
<i, j> c A for which |i-j| = 1 and J> 0.5

We consider a one-particle potential V(q) in (2.1) of the following
form

An additional assumption on V(q) is that v(.) be convex on R1
+.

Let L ( K A ) be the algebra of bounded operators in KA. Let us con-
sider the temperature Gibbs state on L ( K A ) :

where Z b ( A ) = T r e - b H ^ and A e L ( K A ) .
Note, that all algebras L(KA) (for different A) are naturally embedded

in each other

Using this fact we can define the inductive limit

5 We consider a nearest-neighbours interaction just for simplicity.
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which is called the algebra of local observables. The closure of this algebra
in norm forms the quasilocal algebra

The main result of this paper is the following theorem.

Theorem 2.1. For the system of quantum particles with interac-
tions (2.1), (2.2) and for any B one can find some m0 = m0(B), such that for
any 0 < m < m0 the limit

exists. pP(A) gives a state on the algebra U0, which can be continuously
extended to the algebra U.

Using the results of paper(6) it is sufficient to prove this theorem for
some sub-algebra Ut C U of local operators, which we describe below.

The main technical tools are the Feynman-Kac formula and the
representation of the states (2.3) on this algebra by functional integrals
with respect to the measure m( •) (see refs. 7 and 8 for details).

But before we rewrite our system in the language of a functional
integral technique, we make the following standard change of variables(5,6):

The change of variables (2.4) induces the unitary map:

It is easy to check that

where
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Note that all powers of m in V are positive ((s — p ) / ( s + 1) >0 for
p = 1,..., ,s — 1). We also define

which yields

Then

where

Later on we consider the state pp
A and its limit as A /'Zv, and so omit the

"hat" " in the definitions of p and Z ( A ) (retaining it for B).
Now, for given B and A CZv, we consider the space of periodic trajec-

tories ( Q b , A , E p , A ) , where

and Eb,A is the standard a-algebra of Qb,A-subsets generated by Borel
cylinder subsets.(7,8) Then we define the "free" measure on Qb,A by the
formula

where dmb(wA) is determined by the one-particle Hamiltonian. Sometimes
it is convenient to have in mind the following heuristic representation
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For each finite A c= Zv we define the Gibbsian modification d m b ( w A ) of
the "free" measure d m b ( w A ) by the Radon-Nikodym derivative

Now for every bounded function . A ( x A ) on RA we consider the
bounded operator A0 in KA

and for any t > 0 we define

Then for every set of bounded functions A(0)..., , A ( n ) and increasing
sequence of moments 0 — t 0<t 1< ••• <tn<B, we define the operator

and write for this operator our state (2.3')

This definition is correct because every operator A(k)e -(tk+1-tk)HA,
K = 0, 1,..., n, with ?0 = 0 and tn+1 = B, is of trace class. Then the following
formula is true

So, as we mentioned above, using ref. 6 we can reformulate Theorem 2.1
for the states (2.12) as follows:
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Theorem 2.2. For the system of quantum particles with interac-
tions (2.5)-(2.7) and any fixed ft there exists a sufficiently small value m0(B)
of the mass such that for all 0 < m < m0 the weak limit of the measures

exists. mB is thus the limit Gibbs measure on the space Qb,A.

To prove this theorem we are going to apply a cluster expansion pro-
cedure to the measure mb. This is the contents of the following section.

Remark 2.1. For the particular case, where we choose just one
time t0 = 0 and corresponding function ,A(0) we have from (2.13)

and thus, we define the state pB
A (•) on the commutative subalgebra

UcomGU0 of the operator (2.11). Using formula (2.15) we can extend the
class of the observables for which the state pB( •) is defined by the measure
HB ( • ) , but nevertheless this class remains very small. Therefore, the con-
struction of the state pB( •) on the whole algebra U ( K A ) (as well as of the
limit state pB on the local algebra U0) can be carried out by a slight
generalization of our construction, as discussed in ref. 6 (and already men-
tioned in the Introduction).

Remark 2.2. Theorem 2.1 proves the existence of the limit measure
on the space OB,A and its uniqueness for the case where the conditional
measures (for any A c Zv, \A\ < oo) are given by equations (2.10), which
corresponds (in DLR-language) to empty boundary conditions. But the
uniqueness of the limit measure for arbitrary boundary conditions (or, at
least, some class of boundary conditions) is still an open problem. Along
the lines of the works by Albeverio, Hoegh-Krohn, and Zegarlinski(12) and
Albeverio, Kondratiev, Tsikalenko, and R6ckner(13) this could be proved
from the convergence of the cluster expansion.

3. CLUSTER EXPANSION. PROOF OF THEOREM 2.2

The cluster expansion which we are going to use was constructed in
ref. 11 using ideas of refs. 9 and 10.
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The starting point of the cluster expansion for a Gibbs measure is the
cluster expansion for the corresponding partition function

where the sum is extended over all unordered collections of sets of mutually
disjoint subsets B t cA giving a partition of A. In addition, in the content
of Brydges-Federbush type of cluster expansion (see ref. 11), the expres-
sions for KB have the following form: for \b\ = 1, B= {j} e Zv

where J. = J m ( s - 1 ) / ( s + I ) and the integral is defined with respect to the one-
site measure dm 0

, j (w j ) (see (2.9)); for B with \B\ > 1, we can take in every
such set some point k 1 = k 1 ( B ) (for example the smallest one in the
lexicographic ordering of the lattice Zv) and then consider the collection of
indices of the lattice sites of B (i.e., the enumeration of points of B) and
their simultaneous couplings:

such that n ( l ) < l , l = 2,...,n, n = \b\, and \k,-kn(l)\ = 1. Note that the latter
condition implies that B is a 1-connected subset of Zv (i.e., a connected
subgraph of Zv, where the edges are neighboring pairs (k1,, k2) <=ZV ,
\k1 —k2\ = 1). Then, for KB with 1-connected B (\B\ > 1), we get (see refs.
9-11 for details):

where the integral is defined with respect to the product-measure
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And finally

The product in (3.4) is equal to 1 if n ( m ) > m — 2.
Using the same method one can construct a similar expression for

averages ( A d ( . ) ) m b , A , where Ad = A d ( w d ) , D c A is local function which
depends on the trajectories { w j ( t ) , j e D } :

where K B ( A a ) is defined by the formula

Here summation goes over all partitions of B = B1 u • • • u Bs such that
B1 n D= O.

To prove Theorem 2.2 we use (3.5) and the following two lemmas.

Lemma 3.1. For a given temperature there exists a sufficiently
small value of the mass m0, such that for all 0 < m < m0 there exists a con-
stant e = e(w) such that the following estimate is true

and e(m)->0 as m->0.

Lemma 3.2. With the same assumptions as in Lemma 3.1 there
exists a constant c which does not depend on B such that

and
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The proof of these lemmas is the content of the following section.

Proof of Theorem 2,2. Using (3.8) and the first inequality of
Lemma 3.2 and taking into account that all sets B1 ,...,Bm in (3.7) are
1-connected, it is easy to get that

where R ( D ) is a constant independent of A. From this fact and the second
inequality of Lemma 3.2, we can prove the existence of the following limit

with the same bound as in (3.9).
Hence, there exists a probability measure mB,d such that

All these measures are compatible at D1c D2 and consequently are
generated by a unique limit measure nb on the a-algebra W. |

4. CONVERGENCE OF THE CLUSTER EXPANSION

To prove the convergence of the cluster expansion (3.6) as A /"Zv we
should prove Lemmas 3.1 and 3.2.

Proof of Lemma 3.1. First, let us note that because 0<st< 1, the
expression in the curly brackets in the exponent in (3.3) can be estimated
as follows

Thus we estimate this exponent by the unity.
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Then, we apply Schwarz inequality with respect to the measure dm0
,B

in the expression for K B ( A a ) and taking into account that

we get

where

Note that every n generates the graph r ( n ) with vertices B and edges
{kl k n ( l ) } which evidently constitutes a tree.

For a given n we denote by dn(l) the number of vertices {km} in the
graph T ( n ) for which n ( m ) = l (see ref. 14) and set

It is easy to see from the construction of n (see ref. 14) that

To make the situation clear, consider the following example (Fig. 1),
which corresponds to the expression (3.3) with n(2) = l, n(3) = n(4) = 2
and n(5) = l.

Note that every vertex (circle) of the graph corresponds to some site
of the lattice, and every point (end of line) in a circle kl corresponds to
some wkl(Tm).

Using the fact that dm0
,B is a product measure and changing integrals

with respect to dr and dm, we rewrite J B ( n ) in (4.3) as follows:
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where T ( k ) , k= 1,..., 2m,, takes values in the set

and

For the graph in Fig. 1 we have n - 1 (1) = {2, 5}, n - 1 ( 2 ) = {3, 4},
n-1(3) = n-1(4) = n-1(5) = O.

For p >2, r(k), k = 1,..., 2m,, takes values in the set

The integrals in the product of (4) define 2mp-time-point Green functions
of the one-particle Hamiltonian (i.e., the Hamiltonian for one site kp):

The assumptions on the interaction potential V allow to apply a Gaussian
upper-bound inequality, which in our case is just a special case
(Ml = 1, A=kp) of the Lemma 2.1 of ref. 5. Then

where the sum over n p e P ( 2 m p ) is the sum over different partitions indices
1,..., 2mp into pairs; it consists of (2mp)! (2memp!)-1 <2mpmp! terms. Then,
we can write for J B ( n ) the following inequality:
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where

We have dropped the indices (kp) of the Green functions because they are
the same for every site.

Note that S2(t1, t2) = s 2(r 1 — t2), where s2(u) is a periodic function
with period B.

The next step is a trivial identity which follows from the construction
of the graph T(n) taking into account the particular partition n.

For given n, we consider r(n), which can be constructed from q by
doubling every rib (with its ends) of n (this is the result of applying
Schwarz inequality). So, the graph t(n) has the same form as in Fig. 1 but
with a doubled number of ribs. Now. after applying a Gaussian upper-
bound inequality, we should make pairings np, p = 1,..., n, of the points in
every circle. Finally, we get the graph r(n, n). See, for example, Fig. 2 with
the graph r ( n , n ) corresponding to the one from Fig. 1 (with some fixed
pairings).

We denote every pairing by a bold line, and its analytic contribution
is the two-point Green function S2(T1 , T2).

Now, consider some graph r(n, n) (with fixed pairings). Starting from
some kp e b along any rib ( k p , k,) which connects kp and kh we move until
we reach the vertex kl. Then, moving along the corresponding bold line in
the circle kl, we get to another rib ( k l , k s ) and, later, to the vertex ks.

Figure 2
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Repeating this process, we every time will move to the new rib until we get
to the vertex kp. It is easy to see that the graph r ( n , n ) can be represented
as the union of such closed paths with mutually non-coincident ribs. Let us
put every such closed path of length 2p in correspondence with the
following integral:

Then, the following holds:

Proposition 4.1.

where Kp = K p (n , n) is the number of closed paths of length 2p in the graph
T ( n , n), and

Proof. Note that for every rib b = ( n ( l ) , l) of the graph i(n, n), we
have to write in (4.9) the corresponding variables T n ( l ) , l = ib and tn(l),l = r'b.
So,

where the product H < b , b ' > p is over all pairings in the circle kp.
Put in correspondence to every closed path m = (b1 , . . , b2k) Ct(n, n)

the following product:

As for different closed paths m of the graph r (n , n) the variables rb are
different, we get that the integral (4.13) can be represented in the form of
the following product:
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Hence, taking into account the notation (4.10), we get (4.11). Then,
(4.12) follows from the fact that Ep (2k) • Kp is exactly the number of ribs
of the tree graph n. |

Now, taking into account (4.8) and (4.11), we obtain from (4.2) that

where Nn is the number of terms in (4.8).
To estimate the last product in (4.15) let us write the Fourier trans-

form for the periodic function s2(T —t'):

where

Let us use the following representation for s 2 ( t 2 - t1), 0<t1 < T2 = B:

where

is the density of the transition probabilities of the stationary Markov pro-
cess £t, t e R 1 , which is generated by the one-particle Hamiltonian h (2.6)
(see ref. 6 for details), W0 is the ground state of the Hamiltonian h, and E0

is its eigenvalue. Then

is the kernel of operator e -Th, Ws is the normalized eigenvector of h, and Es

is the corresponding eigenvalue.
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Inserting (4.17)-(4.19) in (4.16), we get

where

and

(xss = 0 because of condition (2.2)).
Thus

where

The inequality (4.21) follows from (4.20) with the using of the follow-
ing direct calculations:

The mass of the particle m is contained in the one-particle
Hamiltonian h only through the expression for V (see (2.7)) and further-
more with positive powers we always can choose some constant C1, which
depends only on the coefficients a2p, p = 1,..., s of the polynomial V(q) and
m'0 such that for all 0 < m < m'0

Then, from (4.10), (4.21) and (4.22) we get
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where

To estimate <x 2 >, we use the following inequality, see (ref. 15, Lemma 5.1).

which follows from Theorem 3.1 of ref. 16. The function f( • • •) in (4.24) is
defined by the relation(16):

We remember also that for our case B->B and m—> 1. Then, we use the
following inequality (see ref. 16 for details)

obtaining from (4.21), (4.22), (4.24) and (4.25)

It is easy to see (for example, from a graphical consideration) that for
any fixed b and sufficiently small m0 = m0(b0) < m'0 we can choose some
constant C2, which does not depend on b, such that for all 0<m<m 0

Now, it is enough for convergence to use the very rough estimate
on Nn:
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As a result we obtain from (2.8), (4.12), (4.13), (4.23), (4.27) and
(4.28)

where C3 :=max{l, (C2/C1)1/2}.
The last step of our proof consists in the use of the Battle-Federbush

inequality(14,17):

This yields (3.8) with

and

Proof of Lemma 3.2. To prove Lemma 3.2, we can use the general
theory of polymer-type expansions(18) (or, equivalently, Kirkwood-Salsburg
type considerations(19-22)), which is based on the following cluster estimate:

where e is sufficiently small.
In turn, (4.29) follows from Lemma 3.1, the fact that the number of

sets B with a fixed site {t} and \B\ =n is less than (2V)n , and the following
proposition:

Proposition 4.2. For the one-particle interaction (2.6)-(2.7), we
can choose a sufficiently small mass such that
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The proof of this statement easily follows from the asymptotic limit

if we take into account that at m <0, B-> oo and A -> 0 (see (2.8) and (3.2))
and the fact that the operators h, (see (2.6), (2.7)) and ht + kvx2, have the
same ground states in the limit m -»0. |
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